πŸ†• Build and deploy Haystack pipelines with deepset Studio

AstraDB 🀝 Haystack Integration


In this notebook, you’ll learn how to use AstraDB as a data source in your Haystack pipelines.

Prerequisites

You’ll need an OpenAPI key to follow along. (Haystack is model-agnostic so feel free to use a different one if you’d prefer!)

You’ll need the following variables in order to use the Haystack extension. The following tutorials will show you how to create an AstraDB database, and save these pieces of information.

  • API Endpoint
  • Token
  • Astra keyspace
  • Astra collection name

Follow the first step in this this tutorial to create a free AstraDB database and save your database ID, application token, keyspace, and database region.

Follow these steps to create a collection. Save the name of your collection.

Choose the number of dimensions that matches the embedding model you plan on using. For this example we’ll use a 384-dimension model, sentence-transformers/all-MiniLM-L6-v2.

Next, install our dependencies.

!pip install astra-haystack sentence-transformers

Here you’ll enter your credentials and such. In production code, you’d want to use environment variables for sensitive credentials such as the application token to avoid committing those to source control.

from getpass import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass("Enter your openAI key:")
os.environ["ASTRA_DB_API_ENDPOINT"] = getpass("Enter your Astra API Endpoint:")
os.environ["ASTRA_DB_APPLICATION_TOKEN"] = getpass("Enter your Astra application token (e.g.AstraCS:xxx ):")
ASTRA_DB_COLLECTION_NAME = getpass("enter your Astra collection name:")

Next we’ll create a Haystack pipeline to create the embeddings and add them into the AstraDocumentStore.

import logging

from haystack import Document, Pipeline

from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
from haystack.components.writers import DocumentWriter
from haystack.document_stores.types import DuplicatePolicy

from haystack_integrations.document_stores.astra import AstraDocumentStore

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

embedding_model_name = "sentence-transformers/all-MiniLM-L6-v2"

# embedding_dim is the number of dimensions the embedding model supports.
document_store = AstraDocumentStore(
    astra_collection=ASTRA_DB_COLLECTION_NAME,
    duplicates_policy=DuplicatePolicy.SKIP,
    embedding_dim=384,
)


# Add Documents
documents = [
    Document(content="There are over 7,000 languages spoken around the world today."),
    Document(
        content="Elephants have been observed to behave in a way that indicates"
        " a high level of self-awareness, such as recognizing themselves in mirrors."
    ),
    Document(
        content="In certain parts of the world, like the Maldives, Puerto Rico, "
        "and San Diego, you can witness the phenomenon of bioluminescent waves."
    ),
]
index_pipeline = Pipeline()
index_pipeline.add_component(
    instance=SentenceTransformersDocumentEmbedder(model=embedding_model_name),
    name="embedder",
)
index_pipeline.add_component(instance=DocumentWriter(document_store=document_store, policy=DuplicatePolicy.SKIP), name="writer")
index_pipeline.connect("embedder.documents", "writer.documents")

index_pipeline.run({"embedder": {"documents": documents}})

print(document_store.count_documents())
Batches:   0%|          | 0/1 [00:00<?, ?it/s]


WARNING:astra_haystack.document_store:No documents written. Argument policy set to SKIP


3

Next we’ll make a RAG pipeline so we can query our documents.

from haystack.components.builders.answer_builder import AnswerBuilder
from haystack.components.builders.prompt_builder import PromptBuilder
from haystack.components.generators import OpenAIGenerator
from haystack_integrations.components.retrievers.astra import AstraEmbeddingRetriever

prompt_template = """
                Given these documents, answer the question.
                Documents:
                {% for doc in documents %}
                    {{ doc.content }}
                {% endfor %}
                Question: {{question}}
                Answer:
                """

rag_pipeline = Pipeline()
rag_pipeline.add_component(
    instance=SentenceTransformersTextEmbedder(model=embedding_model_name),
    name="embedder",
)
rag_pipeline.add_component(instance=AstraEmbeddingRetriever(document_store=document_store), name="retriever")
rag_pipeline.add_component(instance=PromptBuilder(template=prompt_template), name="prompt_builder")
rag_pipeline.add_component(instance=OpenAIGenerator(), name="llm")
rag_pipeline.add_component(instance=AnswerBuilder(), name="answer_builder")
rag_pipeline.connect("embedder", "retriever")
rag_pipeline.connect("retriever", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "llm")
rag_pipeline.connect("llm.replies", "answer_builder.replies")
rag_pipeline.connect("llm.meta", "answer_builder.meta")
rag_pipeline.connect("retriever", "answer_builder.documents")


# Draw the pipeline
rag_pipeline.draw("./rag_pipeline.png")


# Run the pipeline
question = "How many languages are there in the world today?"
result = rag_pipeline.run(
    {
        "embedder": {"text": question},
        "retriever": {"top_k": 2},
        "prompt_builder": {"question": question},
        "answer_builder": {"query": question},
    }
)

print(result)
Batches:   0%|          | 0/1 [00:00<?, ?it/s]


{'answer_builder': {'answers': [GeneratedAnswer(data='There are over 7,000 languages spoken around the world today.', query='How many languages are there in the world today?', documents=[Document(id=cfe93bc1c274908801e6670440bf2bbba54fad792770d57421f85ffa2a4fcc94, content: 'There are over 7,000 languages spoken around the world today.', score: 0.9267925, embedding: vector of size 384), Document(id=6f20658aeac3c102495b198401c1c0c2bd71d77b915820304d4fbc324b2f3cdb, content: 'Elephants have been observed to behave in a way that indicates a high level of self-awareness, such ...', score: 0.5357444, embedding: vector of size 384)], meta={'model': 'gpt-4o-mini-2024-07-18', 'index': 0, 'finish_reason': 'stop', 'usage': {'completion_tokens': 14, 'prompt_tokens': 83, 'total_tokens': 97}})]}}

The output should be something like this:

{'answer_builder': {'answers': [GeneratedAnswer(data='There are over 7,000 languages spoken around the world today.', query='How many languages are there in the world today?', documents=[Document(id=cfe93bc1c274908801e6670440bf2bbba54fad792770d57421f85ffa2a4fcc94, content: 'There are over 7,000 languages spoken around the world today.', score: 0.9267925, embedding: vector of size 384), Document(id=6f20658aeac3c102495b198401c1c0c2bd71d77b915820304d4fbc324b2f3cdb, content: 'Elephants have been observed to behave in a way that indicates a high level of self-awareness, such ...', score: 0.5357444, embedding: vector of size 384)], meta={'model': 'gpt-4o-mini-2024-07-18', 'index': 0, 'finish_reason': 'stop', 'usage': {'completion_tokens': 14, 'prompt_tokens': 83, 'total_tokens': 97}})]}}

Now that you understand how to use AstraDB as a data source for your Haystack pipeline. Thanks for reading! To learn more about Haystack, join us on Discord or sign up for our Monthly newsletter.